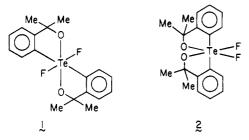
ganic Chemistry THE JOURNAL OF

VOLUME 48, NUMBER 26

© Copyright 1983 by the American Chemical Society

DECEMBER 30, 1983

12-Te-5 Pertelluranes from 1.6-Dioxa-6a-tellurapentalenes. Synthesis. Structure, and Reactivity

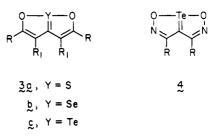

Michael R. Detty* and Henry R. Luss

Research Laboratories, Eastman Kodak Company, Rochester, New York 14650

Received August 3, 1983

2,5-Diphenyl-1,6-dioxa-6a-tellurapentalene (6) is prepared by the condensation of 3-methyl-5-phenyl-1,2-oxatellurolyl-1-ium chloride with benzyl chloride in the presence of triethylamine. The oxidative addition of bromine and chlorine to 6 at low temperature gives 12-Te-5 pertelluranes 7 and 8. At higher temperatures, 7 and 8 are ring halogenated to give 9 and 10. The pertelluranes function as mild oxidants for thiols, selenols, and tellurides and are reduced by these reagents and by hydrazine to dioxatellurapentalenes. The structures of 6 and 9 were unambiguously assigned by single-crystal X-ray crystallographic analyses.

Tellurium(VI) compounds have been known in the literature for a number of years,¹ although the first organotellurium(VI) species (1 and 2) have been reported only recently.² These latter compounds are of the 12-Te-6



class³ and illustrate the ability of the tellurium octet to expand to incorporate 12 electrons in the valence shell. Tellurium(VI) compounds have been generated by oxidative addition of fluorine across the tellurium of a 10-Te-4 species. Corresponding selenium and sulfur analogues are known as well.⁴

In principle, 10-Y-3 compounds (Y = S, Se, Te) should be capable of oxidative addition across the central element to give 12-Y-5 compounds. 1.6-Dioxa-6a-thiapentalenes $(3a)^5$ and 1,6-dioxa-6a-selenapentalenes (3b),^{5b,6} both 10-

 (4) Michalak, R. S.; Martin, J. C. J. Am. Chem. Soc. 1982, 104, 1683.
 (5) (a) Reid, D. H.; Webster, R. G. J. Chem. Soc., Chem. Commun. 1972, 1283. (b) Reid, D. H.; Webster, R. G. J. Chem. Soc. Perkin Trans. 1 1975, 775.

Y-3 compounds, undergo halogen substitution of the pentalene ring when exposed to halogens,^{5a} not oxidative addition. The corresponding tellurium compounds 3c are unknown, although 2,5-diaza-1,6-dioxa-6a-tellurapentalenes (4) have been described.⁷

We wish to report the synthesis and structure of the first 12-Te-5 compounds, pertelluranes 7-10, from the addition of bromine and chlorine across the tellurium atom of 2,5-diphenyl-1,6-dioxa-6a-tellurapentalene (6). The pertelluranes are stable compounds with interesting structural and chemical features.

The dioxatellurapentalene 6 is readily prepared by the reaction shown in eq 1 in 39% yield as a yellow solid, mp 169.5-170.5 °C.^{8,9} Compound 6 has been characterized

^{(1) (}a) Fötsch, W.; Sladky, F. J. Chem. Soc., Chem. Commun. 1980, (b) Lenty, D.; Pritzkow, J.; Seppett, K, Inorg. Chem. 1978, 17, 1926.
 (2) Michalak, R. S.; Martin, J. C. J. Am. Chem. Soc., submitted for

publication. (3) Perkins, S. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.;

Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 7753.

^{(6) (}a) Gleiter, R.; Gygax, R. In "Topics in Current Chemistry";
Springer-Verlag: Berlin, 1976; Vol. 63. (b) Gerson, F.; Gleiter, R.;
Ohya-Nishiguchi, H. Helv. Chim. Acta 1977, 60, 1220.
(7) Perrier, M.; Vialle, J. Bull. Soc. Chim. Fr. 1971, 4591.

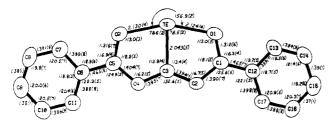
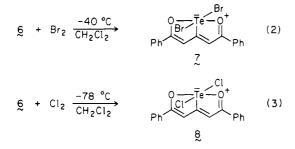



Figure 1. Bond lengths and angles with estimated standard deviations in parentheses.

by a single-crystal X-ray diffraction study, the results of which are shown in Figure 1.¹⁰ The bicyclic ring is planar with the C-C bonds within 1σ of the aromatic value of 1.394 Å and with the C-O bonds intermediate between single-bond (1.36 Å) and double-bond (1.22 Å) values.¹¹ The Te-C bond is somewhat shorter (2.043 Å) than that observed for 5 (2.081 Å).⁸

Compound 6 is quite stable to acidic and basic hydrolyses, surviving both hot 3 N HCl and 1 N KOH. The material appears to undergo slow air oxidation on either silica or alumina plates. Electrochemically, 6 shows E_{p_a} at +1.36 V (vs. SCE) at a platinum disk electrode in CH_2Cl_2 with 0.1 M Bu₄NBF₄ as a supporting electrolyte and E_{p_c} at -1.50 V.

When 1 equiv of bromine was added to 6 as shown in eq 2, a deep magenta solution was obtained from which

small crystals of 12-Te-5 pertellurane 7 were isolated in 99% yield, mp 229-230 °C.¹² The specific conductances of solutions of 7 from 1.0×10^{-5} to 3.0×10^{-3} M (saturated solution) in CH_2Cl_2 were all less than 0.5 $\mu\Omega^{-1}$ cm⁻¹, indicative of a nonconductive, presumably covalent structure. In contrast, a 1.0×10^{-4} M solution of *n*-Bu₄NBr showed a specific conductance of 37 $\mu\Omega^{-1}$ cm⁻¹.

Similar behavior was observed for the addition of a CCl_4 solution of chlorine to 6 at -78 °C, as shown in eq 3, from which 8 was isolated as small, green crystals, mp 178-180.5 °C.13

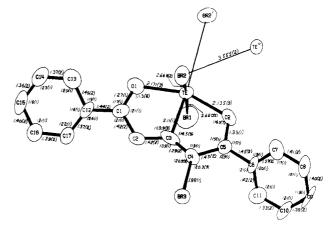
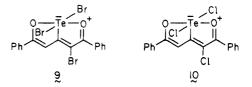



Figure 2. Bond lengths and angles with estimated standard deviations in parentheses. Atom Br2' is related by symmetry x, 1/2 - y, -1/2 + z. Atom Te'' is related by symmetry x, 1/2 - y, 1/2 + z.

At 0 °C or warmer, a second equivalent of bromine or chlorine reacted with 7 and 8, respectively, to give the products of ring halogenation, 9^{14} and 10^{15} Suitable

crystals of 9 (mp 198-198.5 °C were grown for a singlecrystal X-ray crystallographic study, the results of which are shown in Figure 2.16

The coordination about Te in 9 is distorted octahedral with the position trans to the Te-C bond occupied by a long, intermolecular Te-Br2' bond (represented by the thin bonds in Figure 2). The distance (3.355 Å) is considerably less than the sum of van der Waals radii (3.91 Å).¹⁷ The umbrella shape of the five strong ligands to Te can be attributed to the steric influence of a lone pair of electrons on Te. The bicyclic ring in 9 is planar. The Te-C bond is significantly longer in 9 (2.11 Å) than in 6.

Chemically, the pertellurane dibromides 7 and 9 function as mild oxidants for ethylmercaptan, benzenethiol, and benzeneselenol, giving quantitative yields of diethyl di-

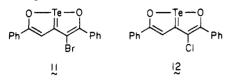
(17) Bondi, A. J. Phys. Chem. 1964, 68, 441.

⁽⁸⁾ For the preparation of 5: Detty, M. R.; Murray, B. J.; Smith, D.

⁽⁸⁾ For the preparation of 5: Detty, M. R.; Murray, B. J.; Smith, D. L.; Zumbulyadis, N. J. Am. Chem. Soc. 1983, 105, 875. (9) ¹H NMR (CDCl₃) δ 8.15 (s, 2 H), 8.05 (m, 4 H), 7.47 (m, 6 H); IR (KBr) 1515 (s) cm⁻¹; UV (CH₂Cl₂) λ_{max} 424 nm (log ϵ 4.61); ¹³C NMR (CDCl₃) δ 181.0 (C₁, C₃), 180.5 (C₃), 107.7 (C₂, C₄); field-desorption mass spectrum (FDMS), m/e 378 (C₁₇H₁₂O₂¹³⁰Te). Anal. Calcd for C₁₇H₁₂O₂Te: C, 54.3; H, 3.2; Te, 33.9. Found: C, 54.0, H, 3.3; Te, 33.5. (10) Crystals of 6 form in the monoclinic space group P2₁ with a =15.620 (3) Å, b = 5.782 (1) Å, c = 7.751 (2) Å, $\beta = 91.08$ (2) Å, V = 699.9(4) Å³, and Z = 2. The intensities of 2220 independent reflections were measured $(2\theta < 60^{\circ})$ and all were included in the refinement of the structure. The location of the tellurium atoms was obtained from a Patterson map. A Fourier electron-density map calculated with phases from the Te atom positions yielded seven additional atoms. The remaining 12 non-hydrogen atoms and all the hydrogen atoms were obtained from subsequent difference electron-density maps. Least-squares refinement of the complete structure converged with R=0.0545 and $R_{\rm w}$ = 0.0416.

⁽¹¹⁾ Sutton, L. E. "Tables of Interatomic Distances and Configurations

⁽¹¹⁾ Sutton, L. E. Tables of interactine Distances and Configurations in Molecules and Ions, Supplement", Chemical Society: London, 1965. (12) IR (KBr) 1595, 1540 (s) cm⁻¹; UV (CH₂Cl₂) λ_{max} 330 (log ϵ 4.146), 547 nm (4.505); FDMS, m/e 536 (C₁₇H₁₂Br₂O₂¹³⁰Te), 457 (M⁺ – Br), 378 (M⁺ – 2 Br). Anal. Calcd for C₁₇H₁₂Br₂O₂Te: C, 38.1; H, 2.3; Te, 23.8; Br, 29.8. Found: C, 37.8; H, 2.2; Te, 22.3; Br, 29.6.


⁽¹³⁾ IR (KBr) 1590, 1550 (s) cm⁻¹; UV (CH₂Cl₂) λ_{max} 315 (log ϵ 4.28), 544 nm (4.50); FDMS, m/e 448 (C₁₇H₁₂Cl₂O₂¹³⁰Te), 413 (M⁺ - Cl), 378 (M⁺ - 2 Cl). Anal. Calcd for C₁₇H₁₂Cl₂O₂Te: C, 45.7; H, 2.7; Te, 28.6. Found: C, 45.9; H, 2.6; Te, 28.9. (14) ¹H NMR (CDCl₃) δ 8.13 (m, 4 H), 7.83 (s, 1 H), 7.60 (m, 6 H); IR (KBr) 1600, 1550 (s) cm⁻¹; UV (CH₂Cl₂) λ_{max} 340 (log ϵ 4.28), 555 nm (4.57); FDMS, m/e 614 (C₁₇H₁₁Br₃O₂¹³⁰Te), 535 (M⁺ - Br), 456 (M⁺ - 2 Br). Anal. Calcd for C.-H., BF-O.TE: C, 33.2; H, 1.8. Found C, 33.4; H,

Br). Anal. Calcd for C₁₇H₁₁Br₃O₂Te: C, 33.2; H, 1.8. Found C, 33.4; H, 1.9.

⁽¹⁵⁾ mp 188-192 °C dec; ¹H NMR (CDCl₃) δ 8.30 (m, 4 H), 7.92 (s, 1 H), 7.65 (m, 6 H); IR (KBr) 1590, 1550 (s) cm⁻¹; UV (CH₂Cl₂) λ_{max} 315 (log ϵ 4.25), 548 nm (4.58); FDMS, m/e 482 (C₁₇H₁₁Cl₃O₂¹³⁰Te), 412 (M⁺ - Cl) (small m/e 516 (C₁₇H₁₀Cl₄O₂¹³⁰Te)).

⁽¹⁶⁾ Crystals of 9 form in the monoclinic space group $P2_1/c$ with a =20.922 (2) Å, b = 11.413 (6) Å, c = 7.557 (2) Å, $\beta = 96.61$ (1) Å, V = 1793(2) Å³, and Z = 4. The intensities of 3156 independent reflections ($2\theta <$ 50°) were measured; of these 1972 had $I > \sigma(I)$ and were included in the refinement of the structure. The tellurium atom position was obtained from a Patterson map and the other atoms from subsequent difference electron-density maps. Hydrogen atoms were included at calculated positions but were not refined. Refinement was complicated by a disorder involving molecules with a bromine bonded to C2 rather than C4. This merely requires flipping the molecule over and occurs with about 5% of the molecules. The different spatial requirements for this disorder cause a small shift in the positions of the other atoms. Consequently, the atomic positions and bond distances in this structure are not well determined, and the final agreement indices, R = 0.080 and $R_w = 0.095$, are higher than usual.

sulfide, diphenyl disulfide, and diphenyl diselenide, respectively, as well as reduction products 6 and 11. Diphenyl telluride is oxidized to diphenyl telluroxide with 7. but diphenyl selenide is unreactive toward 7. The pertellurane dibromides and dichlorides do not react with olefins in CH₂Cl₂ after 48 h in the dark at ambient temperature, although irradiation leads to small amounts of allylic halides. Compounds 9 and 10 are reduced with hydrazine to give 11^{18} and 12^{19} in 71% and 89% yields,

respectively. All of the pertelluranes were susceptible to

decomposition by hydrolysis.

Attempts to induce oxidative additions of iodine to 6 failed, as did attempts to iodinate the pentalene ring of 7 and 8. This is somewhat surprising in view of the traditional stability of RTeI₃ and R₂TeI₂ compounds.²⁰

Acknowledgment. We thank Dr. Thomas H. Whitesides and Dr. William N. Washburn for many helpful discussions.

Registry No. 5, 87761-66-8; 6, 87761-67-9; 7, 87761-68-0; 8, 87761-69-1; 9, 87761-70-4; 10, 87761-71-5; 11, 87761-72-6; 12, 87761-73-7; PhCOCl, 98-88-4; ethylmercaptan, 75-08-1; benzenethiol, 108-98-5; benzeneselenol, 645-96-5; diethyl disulfide. 110-81-6; diphenyl disulfide, 882-33-7; diphenyl diselenide, 1666-13-3; diphenyl telluride, 1202-36-4; diphenyl telluroxide, 51786-98-2; hydrazine, 302-01-2.

Supplementary Material Available: Tables of positional and thermal parameters (Tables I and II for 6, Tables III and IV for 9) and a table of bond angles about Te for 9 (Table V) (5 pages). Ordering information is given on any current masthead page.

Chemical Modification of Deoxyribonucleic Acids: A Direct Study by **Carbon-13 Nuclear Magnetic Resonance Spectroscopy**

Ching-jer Chang,* Jose DaSilva Gomes, and Stephen R. Byrn

Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana 47907

Received April 28, 1983

The chemical modifications of salmon sperm and salmon testes DNAs with 90% ¹³C-enriched methyl meth-anesulfonate have been directly studied by ¹³C NMR and ³¹P NMR. This direct stable isotope approach eliminates all tedious degradation and separation processes for determining the reactive sites and product distribution in studying the in vitro interaction between biological macromolecules and bioactive compounds. Seven methylated products, 7-methyldeoxyguanosine, 1-methyldeoxyadenosine, 3-methyldeoxycytidine, 1-methyldeoxyguanosine, 3-methylthymidine, methyl phosphodiester, and methyl phosphotriester were determined by comparison with model compounds and extensive study of the chemical properties of the methylated DNA. The relative specificity of the methylation reactions may correlate with the DNA conformation.

Chemical modification of polynucleotides and nucleic acids^{1,2} is one of the promising approaches for studying the structure and function of nucleic acids.³⁻¹⁴ It is evident

- (1) Brown, D. M. In "Basic Principles in Nucleic Acid Chemistry", Ts'o, P. O. P., Ed.; Academic Press: New York, 1974; Vol. 2, pp 1-90. (2) Kochetkov, N. K.; Budowsky, E. I. Prog. Nucleic Acid Res. Mol. Biol. 1969. 9. 403-438.
- (3) (a) Sigler, P. B. Annu. Rev. Biophys. Bioeng. 1975, 4, 477-527. (b) Rich, A.; Raj-Bhandary, U. L. Annu. Rev. Biochem. 1976, 45, 805-860. (c) Kearns, D. R. Prog. Nucleic Acid Res. Mol. Biol. 1976, 18, 91-149. (d) (c) Rearns, D. R. *Frog. Nucleic Acia Res. Mol. Biol.* 1976, *18*, 91-149. (d)
 Holbrook, S. R.; Susman, J. L.; Warrant, R. W.; Kim, S.-H. J. Mol. Biol.
 1978, *123*, 631-660. (e) Sarma, R. H. "Nucleic Acid Geometry and Dynamics"; Pergamon Press: New York, 1980.
 (4) Chang, C.-j.; Lee, C.-G. Cancer Res. 1978, *38*, 3734-3736.
- (5) Eshaghpour, H.; Soll, D.; Crother, D. Nucleic Acids Res. 1979, 7, 1485-1496.
- (6) Chaw, Y. F. M.; Crane, L. E.; Lange, P.; Shapiro, R. Biochemistry 1980, 19, 5525-5531.
- (7) Peattie, D. A.; Herr, W. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 2273-2277
- (8) Ford, H.; Chang, C.-H.; Behrman, E. J. J. Am. Chem. Soc. 1981, 103, 7773-7779.
- (9) Harvey, R. G. Acc. Chem. Res. 1981, 14, 218-226.

that the success of this approach relies upon the accurate determination of the reaction specificity, sites of modification, and product distribution. Although the radioisotope-labeling method has generally been used because of its ultrahigh sensitivity, this approach, at best, can merely detect the degree of overall modification. In order to obtain structural information on a covalent interaction, it is necessary to carry out a series of enzymatic and acid-catalyzed hydrolyses followed by chromatography or electrophoresis under acidic or alkaline conditions to separate all modified bases and nucleosides, using radioactivity, fluorescence, or ultraviolet detector.^{15,16} This

⁽¹⁸⁾ mp 166–167.5 °C; ¹H NMR (CDCl₃) δ 8.20 (s, 1 H), 8.10 (m, 2 H), 7.90 (m, 2 H), 7.50 (m, 6 H); IR (KBr) 1500 cm⁻¹; UV (CH₂Cl₂) λ_{max} 426 nm (log ϵ 4.28); FDMS, m/e 456 (C₁₇H₁₁BrO₂¹³⁰Te). Anal. Calcd for C₁₇H₁₁BrO₂Te: C, 44.9; H, 2.4; Te, 28.1. Found: C, 44.7; H, 2.4; Te, 27.3. (19) mp 150–152.5 °C; ¹H NMR (CDCl₃) δ 8.20 (s, 1 H), 8.02 (m, 4 H), 7.50 (m, 6 H); IR (KBr) 1525 cm⁻¹; UV (CH₂Cl₂) λ_{max} 427 nm (log ϵ 4.505); FDMS, m/e 412 (C₁₇H₁₁ClO₂¹³⁰Te). Anal. Calcd for C₁₇H₁₁ClO₂Te: C, 49.8; H, 2.7. Found: C, 49.7; H, 2.8.

⁽²⁰⁾ Irgolic, K. J. "The Organic Chemistry of Tellurium"; Gordon and Breach: New York, 1974.

⁽¹⁰⁾ Ikeda, R. A.; Dervan, P. B. J. Am. Chem. Soc. 1982, 104, 296-297. (11) Czarnik, A. W.; Leonard, N. J. J. Am. Chem. Soc. 1982, 104, 2624-2631

⁽¹²⁾ Fritzinger, D. C.; Fournier, M. J. Biochemistry 1982, 21, 2118-2127.

 ⁽¹³⁾ Kaplan, D. J.; Tomasz, M. Biochemistry 1982, 21, 3006-3013.
 (14) Mong, S.; Eubanks, D. C.; Prestayko, A. W.; Crooke, S. T. Biochemistry 1982, 21, 3174-3180.